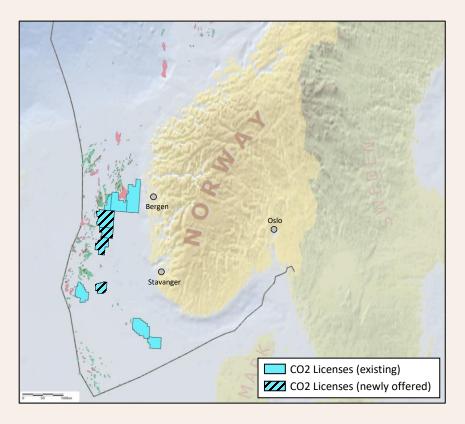


Offshore CO2 Storage

The importance of an integrated Value Chain


Asle Solheim Lime Petroleum AS, Oslo Norway

Baltic Carbon Forum 2024
Vilnius, Lithuania
3rd and 4th October 2024

Norway Offshore CCS – High Capacity and Long Term

- 11 CO2 Storage Licences awarded in Norway North
 Sea per June 2024 and more to come
- Capacity to store around 40 MTPA from 2030, starting in 2024 or 2025 with Northern Lights

•	EL001	Northern	Lights	(Equinor,	Shell	Total E	Ξ)
---	-------	----------	--------	-----------	-------	---------	----

EXL002 Smeaheia (Equinor)

EXL003 Polaris (Horizont Energy, PGNiG)

EXL004 Luna (Wintershall DEA, Total E)

EXL005 Poseidon (Aker BP, OMV)

EXL006 Havstjerne (Wintershall, Stella Maris)

• EXLO07 Trudvang (Sval Energi, Vår Energi,

Storegga)

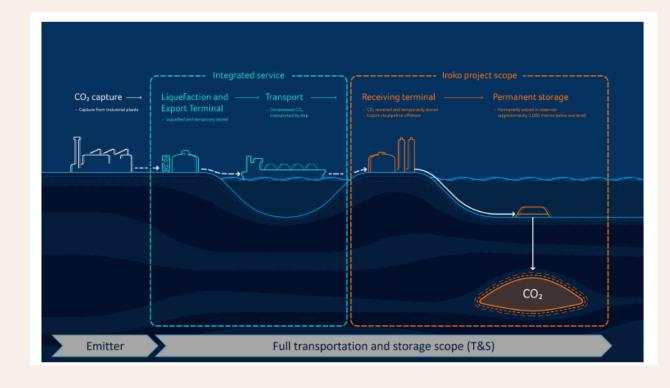
New Licences:

• EXL TBN Atlas (Aker BP, PGNiG)

• EXL TBN Kinno (Equinor)

EXL TBN Albondigas (Equinor)

EXL TBN Iroko (Vår Energi, OMV, Lime Petroleum)

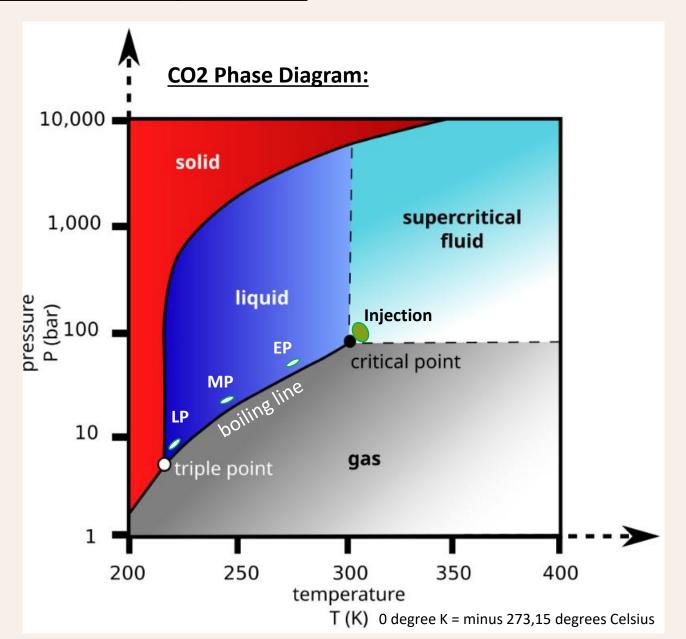


Offshore CCS - Important element to meet decarbonization

- Many projects are in the planning
 - > Regulations, Legislation and Policies are in development
- Lack of infrastructure to form the Value Chain.
 - Huge investments
 - Lack of standardised technical solutions
 - ➤ All links in the Chain must be developed in parallel
- CCS is currently a loss making business
 - Economies of Scale
 - Cost effetive Value Chains for large volumes
 - CCS business similar to the Waste Management Business
- Cost of CO2 emissions (ETS) expected to increase?
 - ➤ 80-100 Eur per ton today
 - 200 300 Eur per ton in 2030?

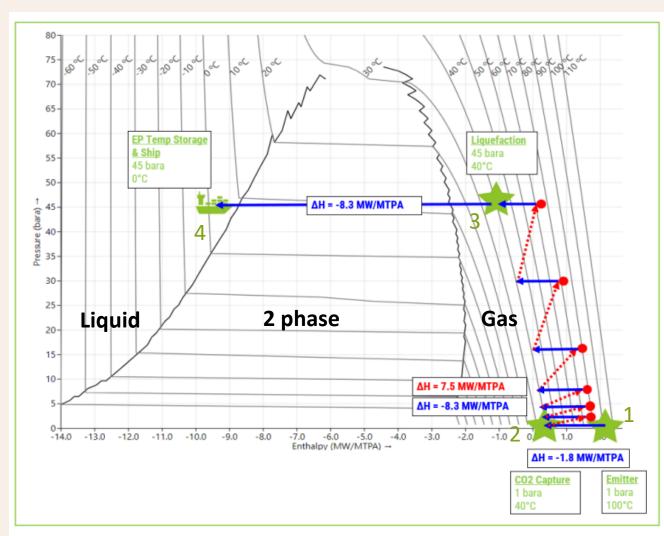
➤ EU – Net Zero Industry Act (NZIA)

CO2 Pressure and Temperature


Pressure Cases:

- Elevated Pressure EP
- Medium Pressure MP
- Low Pressure LP

Level	Temperature (°C)	Pressure (barg)
Elevated Pressure	0 – 10	34 - 44
Medium Pressure	-3020	12 - 17
Low Pressure	-55 – -40	5 – 7


Value Chain Criteria to meet:

- Safe
- Reliable
- Cost and Energy effective

CO2 Energy Modelling - Pressure vs. Enthalphy charts

Example chart showing CO2 from Emitter to Liquefaction and loading onto vessel in the EP case

Entalphy H = U + PV

Entalphy is a thermodynamic quantity equivalent to the total heat content of a system where U = interal energy, P = pressure and V = volume

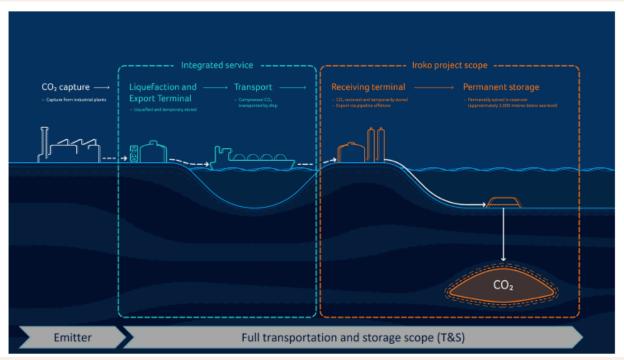
How much energy (MW) needed to liquefy 1 MTPA CO2:

Initial cooling -1.8 MW/MTPA

Multistage compression 7.5 MW/MTPA

• Cooling -8,3 MW/MTPA

TOTAL 17,6 MW/MTPA

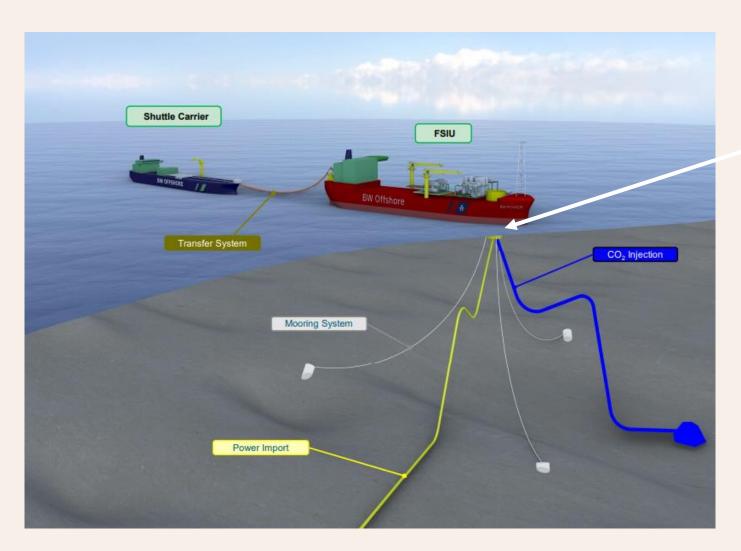

Types of Energy:

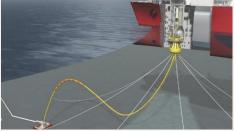
- Low cost Heat Exchange (with sea water)
- High cost Electrical Energy for pumps & compressors

Offshore Value Chain – 4 Main Technical Scenarios for deep water

- 1. Ship Transport to Onshore Terminal with pipeline to store (Northern Lights)
- 2. Ship Transport to Offshore Terminal (Floating Storage and Injection Unit FSIU)
- 3. Ship Transport directly to store and injection
- 4. Offshore pipeline directly to store and injection

Offshore Value Chain - Alternative 2 w/ FSIU




Shuttle Carrier:

- 40-70 000 ton capacity preferred
- Floating hose Transfer system

FSIU:

- 80 000 ton typ storage capacity
- Weather vaning
- Injecting 7,5 MTPA continuously

STL:

- Single Turret Loading (STL)
- Developed for oil loading applications
- 30 years successful use

CO2 Shipping – Shuttle Tankers

Commercial Shipping: 1989 >

Source: Yara International ASA

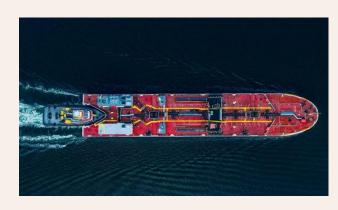
Northern Lights: 2024 >

R

Large Scale LP Carriers: 2030 >?

Mitsubishi Shipbuilding

Large Scale HP Carriers: >?


Knutsen HP carrier concept - source: DNV

CO2 Collecting Terminals & Logistics

- Several emitter sites for capture and liquefaction
- Intermediate small scale transport from emitter site to collection hubs by vessels, barges, train and trucks
- Land based collecting hub or terminals
 - Require deep water quay (13 m)
 - Large area sea front property
- Offshore Collecting Hubs (FSU) may be an alternative in the Baltic Sea due to:
 - Shallow water near shore
 - Preserving beach front
 - Potential ice problems during winter season near shore

Examples of Floating Intermediate Transport Solutions

Onshore Collecting Terminal

Offshore Collecting Terminal Floating Storage Unit (FSU)

Sum-up

- Offshore CCS is an important element in the decarbonization strategy
- > Integrated and optimized large-scale Value Chain is key to offshore CCS success
- > The elements in the chain must be developed in parallel huge investments
- > Standardised solutions
 - Pressure cases
 - > Technical solutions
- Governmental support in structuring CCS as a profitable business
 - Cost of CO2 emissions must increase

THANK YOU!