Introducing the Lithuanian Perspective, Energy Transition Journey

Deputy minister Inga Žilienė 03-10-2024 Vilnius

LITHUANIA'S STRATEGY ENERGY OBJECTIVES

REPUBLIC OF LITHUA

• Lithuania's energy strategy envisions a future where the country is energy independent and carbon-neutral by 2050

• Focus on transitioning to 100% renewable energy, reducing reliance on fossil fuels, and achieving net-zero emissions

• CCUS is a key component of the strategy, aimed at supporting decarbonization in hard-to-abate sectors like industry and energy generation

Electricity generation

Lithuania – electricity exporting country by 2030 and beyond

A 5-to-8-fold increase in installed capacity, driven by onshore & offshore wind and solar PV...

...is leading to a 10 to 20 higher electricity generation.

DNV outcomes based on Energy Transition Model

LITHUANIA'S COMMITMENT TO REDUCING CARBON EMISSIONS

Decarbonisation – Renewable Energy

	Member State	RES-shares					
		2020 national binding target	2021 national SHARES value	2030 national contribution (draft updated NECP)	2030 shares in line with the formula	Ambition gap	
	AT	34%	36.4%	46%-50%	57%	Significantly below	
	BE	13%	13.0%	18%	33%	Significantly below	
	BG	16%	17.0%	29.9%	33%	Below	
	CY	13%	18.4%	26.5%	33%	Significantly below	
	CZ	13%	17.7%	30%	33%	Below	
	DE	18%	19.2%	40%	41%	Slightly below	
	DK.	30%	34.7%	70.9%	60%	Significantly above	
	EE	25%	38.0%	65%	50%	Significantly above	
	EL.	18%	21.9%	44%	39%	Significantly above	
	ES	20%	20.7%	47.9%	43%	Above	
	FI	38%	43.1%	51%	62%	Significantly below	
	FR	23%	19.3%	33%	44%	Significantly below	
	HR	20%	31.3%	42.5%	44%	Slightly below	
	HU	13%	14.1%	29%	34%	Significantly below	
	IE	16%	12.5%	34.1%	43%	Significantly below	
	IT	17%	19.0%	40.5%	39%	Slightly above	
	LT	23%	28.2%	55%	49%	Significantly above	
	LU	11%	11.7%	37%	37%	In line	
	LV	40%	42.1%	50%	61%	Significantly below	
	MT	10%	12.2%	11.5%	28%	Significantly below	
	NL	14%	13.0%	27%	39%	Significantly below	
	PL	15%	15.6%	23%-31%	32%	Significantly below	
	PT	31%	34.0%	49%	51%	Slightly below	
	RO	24%	23.6%	34%	41%	Significantly below	
	SE	49%	62.6%	65%	76%	Significantly below	
	51	25%	25.0%	30%-35%	46%	Significantly below	
1	SK	14%	17.4%	23%	35%	Significantly below	

Only 7 MS (DK, EE, EL, ES, IT, LT, LU) submitted a contribution in line with the expected national contribution.*

Ambition put forward by MSs amounts to a RES share of **between 38.6% and 39.3%** in 2030 at Union level, lower than the binding target of **42.5%**.*

*under the Governance Regulation and the revised RED II.

In the overall

EU context,

LT is singled

significantly

objectives of

exceeding

the RES

out as

the

CO2 CAPTURE POTENTIAL IN LITHUANIA

CO2 EMISSIONS REDUCTION PER SECTOR UNTIL 2050

Main decarbonization levers MtCo₂e

THE ROLE OF CCS TECHNOLOGIES IN LITHUANIA'S ENERGY TRANSITION

Key Roles of CCS in Lithuania's Energy Transition:

1. Diversifying the Energy Mix:

- $\checkmark~$ Onshore and offshore wind
- ✓ Solar power
- ✓ Biomass
- ✓ Hydrogen and Synthetic Fuels
- 2. Contributing to Energy Security:
- ✓ reducing reliance on imported fossil fuels
- ✓ building a CO₂ storage facilities
- 3. Achieving Climate Goals While Ensuring Competitiveness – **Industrial carbon management**
- 4. Developing Cross-Border CCS Infrastructure

THE MOST POTENTIAL BIOMETHANE OBJECTS FOR CO2 COLLECTION IN LITHUANIA

THE MOST POTENTIAL BIOFUEL COMBUSTION OBJECTS FOR CO2 COLLECTION IN LITHUANIA

(the share of biogenic CO2 emitted by companies burning biofuels amounted to EUR 2.6 Mt.)

- Lithuania's commitment to **reducing reliance on imported fossil fuels** requires developing domestic energy resources.
- By capturing CO₂ from existing energy production facilities, CCS ensures that Lithuania's energy system remains reliable during the transition to renewables.
- Additionally, CO₂ storage facilities and pipelines can become part of a regional CCS network, allowing Lithuania to store not only its own emissions but also those from neighbouring countries, creating new economic opportunities.

SYNTHETIC FUEL PRODUCTION IN LITHUANIA

	Methanol	Sustainable aviation fuel and synthetic diesel (produced together)	Synthetic methane	POTENTIAL SYNTHETIC SYNTHETIC FUELS PRODUCERS IN LITHUANIA		
Total production	2,5 Mt (14 TWh)	1,85 Mt (23 TWh)	1,3 Mt (17 TWh)	*		
H ₂ demand	0,48 Mt	0,7 Mt	0,48 Mt	ignitis grupė ORLEN Lietuva		
Demand for electricity TWh (H2 production and CO ₂ capture)	30 TWh	43 TWh	30 TWh			
CO ₂ requirement for 1 t production	1,4 t	3,1 - 4,1 t	2,8 t	CIS		
H2 requirement for 1 t 0,19 t		0,25 - 0,36 t	0,38 t	Parsekas		

Source: Ambergrid AB study, 2024

ACHIEVING CLIMATE GOALS WHILE ENSURING COMPETITIVENESS

- CCS enables Lithuanian industries to comply with **EU climate regulations**, including the
- EU Emissions Trading System (ETS) and
- the Carbon Border Adjustment Mechanism (CBAM), without losing competitiveness
- The cost of carbon taxes and carbon pricing mechanisms is mitigated through CCS, allowing industries to remain operational in a low-carbon economy and avoid heavy penalties for emissions

DEVELOPING CROSS-BORDER CCS INFRASTRUCTURE

- Lithuania's geographical location in the Baltic Sea region makes it well-positioned to develop cross-border CO₂ transport and storage infrastructure. By partnering with neighbouring countries, like Latvia and Poland, Lithuania could temporarily store CO₂ offshore, creating a network for regional decarbonization efforts.
- This infrastructure will also benefit from EU funding mechanisms like the Innovation Fund and CEF, which support the development of CCS projects across Europe.

EU PERSPECTIVE ON CCS – NET-ZERO INDUSTRY ACT (NZIA)

- NZIA is a key legislative measure introduced by the European Commission to increase the competitiveness of Europe's net-zero industries and boost the production of clean technologies, including CCS.
- The Act establishes a framework to **promote investment** in carbon management technologies by offering **regulatory support** and **streamlined permitting** processes.
- CCS is viewed as crucial for industries that cannot easily electrify, particularly in **energy-intensive sectors** like steel, cement, and chemicals.
- NZIA also emphasizes the development of cross-border CO₂ transport and storage infrastructure, aiming to create a pan-European CCS network by 2030.

The transport network will play a crucial role in enabling CO2 to be transported to permanent storage sites © freepik.com

FINANCIAL IMPACT ON LITHUANIA'S ENERGY TRANSITION

- The integration of CCS into Lithuania's energy transition will require significant investment but offers **long-term economic benefits**.
- Initial Investments: By 2050, Lithuania is projected to invest €1.3 billion in CCUS technologies, primarily in developing CO₂ transport infrastructure (pipelines)
- These investments **will focus on**:
 - Expanding renewable energy capacity (onshore/offshore wind and solar).
 - Building a robust CO₂ transportation infrastructure.
 - Developing CCUS temporary storage to decarbonize industries.

SOCIO-ECONOMIC BENEFITS BY 2050

CURRENT AND FUTURE CCUS PROJECTS

- Lithuania is actively pursuing CCUS pilot projects, such as those integrated with hydrogen production and heavy industries.
- By 2050, Lithuania aims to invest approximately €9 billion in H2 production, CCUS technologies, including the development of CO₂ pipelines and storage sites.
- These projects will enable Lithuania to meet its **energy independence** and **carbonneutrality goals** while also supporting regional efforts to reduce emissions.

CO ₂ CAPTURE FROM HYBRID OBJECTS, million t CO ₂ /year	£
2030> - 2040> 1,8 2050> 1,8	E

E1,2 billion

Indicative level of investment for the capture of **1.8 Mt CO₂/year** of fossil and biogenic CO₂ from hybrid objects

- CCUS is critical to Lithuania's energy future, enabling the country to meet its decarbonization targets while maintaining economic growth and industrial competitiveness.
 - "Feasibility study on the use of CO₂ capture and storage, hydrogen and other innovative technologies in Lithuanian industrial enterprises operating in the most negatively affected areas" (Ministry of Economy and Innovations)
- Continued investment, international cooperation, and policy support will be needed to scale CCUS technologies.

Stages of the CO_2 capture, transport, storage and utilisation value chain:

- **by 2030** the first biogenic carbon capture and deployment projects for synthetic green fuels have been implemented;
- by 2040 the first projects for the capture of carbon dioxide at large combustion plants of biofuels and/or waste have been implemented;
- by 2050 fossil fuel carbon emissions from hard-to-abate companies, are equal to the carbon content they capture (becoming climate-neutral companies);

National Strategy for Energy Independence, 2024

Lithuania is well-positioned to become a **regional leader** in **carbon management** and **renewable energy**.

Thank you for your attention